Qus : 2 nimcet PYQ 2
The range of values of $\theta$ in the interval $(0,\pi)$ such that the points (3, 2) and $(cos\theta ,sin\theta)$ lie on the samesides of the line x + y – 1 = 0, is
1
$$\Bigg{(}0,\frac{3\pi}{4}\Bigg{)}$$ 2 $$\Bigg{(}0,\frac{\pi}{2}\Bigg{)}$$ 3 $$\Bigg{(}0,\frac{\pi}{3}\Bigg{)}$$ 4
$$\Bigg{(}0,\frac{\pi}{4}\Bigg{)}$$ Go to Discussion nimcet Previous Year PYQ nimcet NIMCET 2023 PYQ Solution
Same Side of a Line — Geometric Condition
Line: \( x + y - 1 = 0 \)
Point 1: (3, 2) → Lies on the side where value is positive:
\[
f(3, 2) = 3 + 2 - 1 = 4 > 0
\]
Point 2: \( (\cos\theta, \sin\theta) \) lies on same side if:
\[
\cos\theta + \sin\theta > 1
\]
Using identity:
\[
\cos\theta + \sin\theta = \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right)
\Rightarrow \sin\left(\theta + \frac{\pi}{4}\right) > \frac{1}{\sqrt{2}}
\]
So:
\[
\theta \in \left(0,\ \frac{\pi}{2}\right)
\]
✅ Final Answer:
\( \boxed{\theta \in \left(0,\ \frac{\pi}{2}\right)} \)
Qus : 5 nimcet PYQ 4 If the perpendicular bisector of the line segment joining p(1,4) and q(k,3) has yintercept -4, then the possible values of k are
1 -3 and 3 2 -1 and 1
3 -2 and 2 4 -4 and 4
Go to Discussion nimcet Previous Year PYQ nimcet NIMCET 2024 PYQ Solution
Given: Points: \( P(1, 4) \), \( Q(k, 3) \)
Step 1: Find midpoint of PQ
Midpoint = \( \left( \dfrac{1 + k}{2}, \dfrac{4 + 3}{2} \right) = \left( \dfrac{1 + k}{2}, \dfrac{7}{2} \right) \)
Step 2: Find slope of PQ
Slope of PQ = \( \dfrac{3 - 4}{k - 1} = \dfrac{-1}{k - 1} \)
Step 3: Slope of perpendicular bisector = negative reciprocal = \( k - 1 \)
Step 4: Use point-slope form for perpendicular bisector:
\( y - \dfrac{7}{2} = (k - 1)\left(x - \dfrac{1 + k}{2}\right) \)
Step 5: Find y-intercept (put \( x = 0 \))
\( y = \dfrac{7}{2} + (k - 1)\left( -\dfrac{1 + k}{2} \right) \)
\( y = \dfrac{7}{2} - (k - 1)\left( \dfrac{1 + k}{2} \right) \)
Given: y-intercept = -4, so:
\( \dfrac{7}{2} - \dfrac{(k - 1)(k + 1)}{2} = -4 \)
Multiply both sides by 2:
\( 7 - (k^2 - 1) = -8 \Rightarrow 7 - k^2 + 1 = -8 \Rightarrow 8 - k^2 = -8 \)
\( \Rightarrow k^2 = 16 \Rightarrow k = \pm4 \)
✅ Final Answer: $\boxed{k = -4 \text{ or } 4}$
Qus : 10 nimcet PYQ 1 The points (1,1/2) and (3,-1/2) are
1 In between the lines 2x+3y=6 and 2x+3y = -6 2 On the same side of the line 2x+3y = 6 3 On the same side of the line 2x+3y = -6 4 On the opposite side of the line 2x+3y = -6 Go to Discussion nimcet Previous Year PYQ nimcet NIMCET 2024 PYQ Solution
Given:
Points: \( A = (1, \frac{1}{2}) \), \( B = (3, -\frac{1}{2}) \)
Line: \( 2x + 3y = k \)
Step 1: Evaluate \( 2x + 3y \)
For A: \( 2(1) + 3\left(\frac{1}{2}\right) = \frac{7}{2} \)
For B: \( 2(3) + 3\left(-\frac{1}{2}\right) = \frac{9}{2} \)
✅ Option-wise Check:
In between the lines \( 2x + 3y = -6 \) and \( 2x + 3y = 6 \):
✔️ True since \( \frac{7}{2}, \frac{9}{2} \in (-6, 6) \)
On the same side of \( 2x + 3y = 6 \):
✔️ True , both values are less than 6
On the same side of \( 2x + 3y = -6 \):
✔️ True , both values are greater than -6
On the opposite side of \( 2x + 3y = -6 \):
❌ False , both are on the same side
✅ Final Answer:
The correct statements are:
In between the lines \( 2x + 3y = -6 \) and \( 2x + 3y = 6 \)
On the same side of the line \( 2x + 3y = 6 \)
On the same side of the line \( 2x + 3y = -6 \)
Qus : 13 nimcet PYQ 1 If non-zero numbers a, b, c are in A.P., then the straight line ax + by + c = 0 always passes
through a fixed point, then the point is
1 (1,-2) 2 (1, -1/2) 3 (-1,2) 4 (-1,-2) Go to Discussion nimcet Previous Year PYQ nimcet NIMCET 2017 PYQ Solution Since a, b and c are in A. P. 2b = a + c
a –2b + c =0
The line passes through (1, –2).
Qus : 15 nimcet PYQ 3 The lines $px+qy=1$ and $qx+py=1$ are respectively the sides AB, AC of the triangle ABC and the base BC is bisected at $(p,q)$. Equation of the median of the triangle through the vertex A is
1 $(2pq-1)(qx+py-1)-(p^2+q^2-1)(px+qy-1)=0$ 2 $(2pq-1)(px+qy-1)+(p^2+q^2-1)(qx+py-1)=0$ 3 $(2pq-1)(px+qy-1)-(p^2+q^2-1)(qx+py-1)=0$ 4 $(2pq-1)(qx+py-1)+(p^2+q^2-1)(px+qy-1)=0$ Go to Discussion nimcet Previous Year PYQ nimcet NIMCET 2021 PYQ
Solution [{"qus_id":"3769","year":"2018"},{"qus_id":"3766","year":"2018"},{"qus_id":"3913","year":"2019"},{"qus_id":"3912","year":"2019"},{"qus_id":"4286","year":"2017"},{"qus_id":"4287","year":"2017"},{"qus_id":"10690","year":"2021"},{"qus_id":"11120","year":"2022"},{"qus_id":"11134","year":"2022"},{"qus_id":"11140","year":"2022"},{"qus_id":"11147","year":"2022"},{"qus_id":"11540","year":"2023"},{"qus_id":"11544","year":"2023"},{"qus_id":"11628","year":"2024"},{"qus_id":"11660","year":"2024"},{"qus_id":"10206","year":"2015"},{"qus_id":"10217","year":"2015"}]